Curriculum vitae
Contact information
- Email address: Cheryl.McCarthy@usq.edu.au
- Official website address: http://www.ncea.org.au
- Postal address: National Centre for Engineering in Agriculture, University of Southern Queensland, West Street
- City/region: Toowoomba
- Country: Australia
- Business phone: 0746312297
- Mobile phone: 0447133575
- Fax number: 0746311870
Biography
Dr Cheryl McCarthy is a Senior Research Fellow in mechatronic engineering with the Centre for Agricultural Engineering (formerly NCEA) at the University of Southern Queensland. Her research involves developing machine vision and sensing systems for agriculture. She has worked on machine vision projects for the beef, fodder and macadamia industries and her current projects include precision sensing of weeds for the sugar, cotton and grains industries. She has a BEng (Mechatronic) and PhD from USQ. Her research interests include the application of mechatronic engineering to agriculture and imaging spectrometry. She holds a CASA UAV Operator's Certificate.
Areas of expertise
Machine vision and image analysis applied to agriculture
Field instrumentation for remote sites
Current research activities
- Novel detection of chicken welfare using machine vision
- Real-time sugarcane harvester losses assessment with machine vision systems
- Real-time image analysis and prescription map from UAV / RPAS imagery
- Precision weed sensing for pyrethrum, sugar, cotton and grains industries
- Remote sensing of beehives to improve surveillance for honeybee pests
- Accelerating autonomous tractor technologies for agriculture
- Remote grain variety trial site monitoring
Livestock project publications by USQ-CAE's Automation theme
- Neves, DP; Abdanan Mehdizadeh, SA; TSCHARKE, M; De Alencar Nass, I; Banhazi, TM (2015). Detection of flock movement and behavior of broiler chickens at different feeders using image analysis. Information Processing in Agriculture, Vol. 2, p. 177-182, 2015.
http://www.sciencedirect.com/science/article/pii/S2214317315000475
- Cronin, G. M. and Borg, S. S. and DUNN, M. T. (2008) Using video image analysis to count hens in cages and reduce egg breakage on collection belts. Australian Journal of Experimental Agriculture, 48 (7). pp. 768-772. ISSN 0816-1089
http://www.publish.csiro.au/paper/EA07404.htm
- Finch, Neal A. and Murray, Peter J. and DUNN, Mark T. and BILLINGSLEY, John (2006) Control of watering point access using machine vision classification of animals. Transactions of the Western Section of the Wildlife Society, 42. pp. 16-19. ISSN 0893-214X
http://www.tws-west.org/transactions/Finch%20invasive%20species.pdf
Remote sensing of bait boxes to improve surveillance http://www.portbees.com.au/
The Australian honeybee industry is currently free from a number of exotic bee pests that have devastated honeybee populations around the world. This HIA/RIRDC project was to develop an electronic sensing system that could automatically detect when a swarm of bees had entered a bait box (an old beehive which is used as a pest bee trap), to save a bait box officer from having to continually check for exotic bees inside the bait box, and to allow round-the-clock trap monitoring.
Remote surveillance bait box project on 60 Minutes 'Bee Scared' 31 May 2015
The HIA-RIRDC bait box project featured on '60 minutes', see story at
http://www.9jumpin.com.au/show/60minutes/stories/2015/may/bee-scared/
Weed spot spraying for the cotton, sugar and pyrethrum industries
Weeds cost Australian agriculture $2-4 billion each year, with control methods typically comprising manual spot spraying, broadcast spraying or tillage operations. A Machine Vision System mounted on a tractor or ground robot can tell the difference between weeds and crop plants growing next to each other, and only spray the weed, hence reducing herbicide use.
Queensland Government Accelerate Fellowship: UAV hotspot detection